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Towards robust portfolios
Hierarchical risk parity: persistent diversification uncovered 
by graph theory and machine learning 

In recent years, machine learning (ML) techniques have found their way into 
almost all areas of practical applications, and many financial experts started 
to apply these methods to financial markets and asset allocation. Asset alloca-
tion is one core factor in determining the risk/return profile for an investment 
portfolio. The hierarchical risk parity allocation (HRP) provides a new modern 
portfolio construction technique which improves the robustness and diversifi-
cation of a portfolio in many cases and thus contributes to refined portfolio 
performance.

At Munich Re, we launched the FIVE Robust Multi-Asset Index (VROBUST) 
applying the HRP methodology on a broadly diversified portfolio consisting of 
global equity indices, government bonds and commodities. The HRP portfolio 
exhibits superior risk-adjusted returns and shows better results regarding 
drawdown metrics when compared to most other common allocation methods. 

Classical portfolio allocation techniques typically are either based on simple 
approaches which do not incorporate the correlation between the assets, e.g. 
equal weights (EW), fixed weights (FW) or inverse volatility (naive risk parity, 
NRP) or the allocation techniques are based on more complex approaches 
depending on forecasting the covariance matrix and calculating its inversion. 
Examples of these more complex alternatives are minimum variance (MV), 
most diversified portfolio (MDP) and equally-weighted risk contribution (ERC). 
By their nature, the simple approaches cannot incorporate different market 
environments representing changing correlation structures as they simply 
ignore correlations. The complex methods optimise a risk-adjusted perfor-
mance target function sensitive to an inversion of the predicted future covari-
ance matrix. Non-stationary return time series due to changing market behav-
iour lead to uncertainties in the estimators for this future covariance matrix 
and thus to a lack of robustness of the resulting weights, causing an unneces-
sary high turnover. 

The hierarchical risk parity (HRP) approach developed by de Prado (2016) 
strikes a new path by incorporating graph theory and machine learning tech-
niques to derive a more robust allocation method. The algorithm takes advan-
tage of the correlation structure without being dependent on the inversion of 
the covariance matrix. The comprehensible and straightforward construction 
of HRP makes it also an ideal candidate not only for classical long-only port-
folios but also for alternative beta strategies which use long-short positions 
for implementing their investment idea.

What problems do traditional allocation approaches face?

The so-called Modern Portfolio Theory (MPT) goes back to Nobel prize laure-
ate Harry M. Markowitz and today is the scientific foundation for many asset 
managers to compose their investment portfolios. MPT addresses the benefits 
of diversification and acknowledges the fact that assets need to be assessed 
in a portfolio context.

Choosing an adequate combination of the selected assets can make a funda-
mental difference.  Mathematically speaking, Markowitz formulates a quad-
ratic optimisation problem trying to find a portfolio with the best ratio of return 
to risk. However, financial market data tends to be complex data with 
 fluctuating statistical features. It turned out that MPT is too sensitive to the 
stationarity of return time series so that even small forecasting and estimation 
errors without structural breaks in market behaviour can lead to dramatically 
different efficient frontiers (Michaud, 1989; Broadie, 1993). The uncertainties 
associated with the estimation and prediction of the efficient frontier lead to 
unstable and unpredictable out-of-sample results. This is known as the 
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Markowitz’s curse: the higher the correlations and the more diversification is 
needed, the more pronounced the failure of MPT. 

Even more, returns can rarely be forecasted with sufficient accuracy, and as a 
consequence, many practitioners and model developers have dropped return 
forecasting altogether. 

Since the minimum variance approach is very susceptible to inaccuracies, 
it becomes evident that the outcome is at high risk of adverse market devel-
opments. Minor changes in the covariance matrix, divergent realisation or 
 inaccuracies with the matrix inversion can have distinct and erratic effects  
(cf. figure 1).

 

     

The quadratic optimisation in the Markowitz approach enlarges small estima-
tion errors; this is called the error maximisation property, giving rise to risk-
based asset allocation approaches like risk budgeting (with equally-weighted 
risk contribution (ERC) as special case) or the maximum diversified portfolio 
approach. However, numerous studies show that quadratic optimisers in gen-
eral produce unreliable solutions. Many of the best known quadratic optimisers 
underperform the naive equal weight (EW) allocation out-of-sample.

Return (e)* Volatility (e)* Weight

ASSET 1 10% 10% 33.3%

ASSET 2 10% 10% 33.3%

ASSET 3 10% 10% 33.3%

Return (e) Volatility (e) Weight

ASSET 1 10% 10% 50%

ASSET 2 10% 10% 50%

ASSET 3 10% 10.5% 0%

Return (e) Volatility (e) Weight

ASSET 1 10% 10% 0%

ASSET 2 10% 10% 0%

ASSET 3 11% 10% 100%

The Markowitz’s curse

Figure 1
Examples of an optimisation for the tangency portfolio. The solution provides the asset weights which 
are supposed to realise the highest performance quality. Estimation errors might eliminate the diversifi-
cation benefits. MPT allocation is very sensitive to its input, especially in high correlation cases. 
Source: Munich Re

Base case: assume a portfolio with 3 assets and a correlation of 90% between each of the asset pairs. 
As all have the same return/risk attributes, the algorithm weights are equally distributed – in line 
with intuition.

In portfolios with highly correlated assets, small changes in expected volatilites can produce very differ-
ent weights. In the above case, a slightly increased risk for asset 3 is sufficient to set its weight to 0%.

A small increase in the expected return is enough to remove asset 1 and 2 entirely from the portfolio. 
The “optimal” solution now consists of one asset. Again, small estimation errors can have severe effects 
on the allocation.     
*(e): expected
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The equally-weighted risk contribution (ERC) approach became famous in the 
years following the Dotcom Bubble. Due to diversification effects disappearing 
during the Global Financial Crisis (2007–2009) as assets suddenly tended to 
move in sync, ERC missed to outperform during that period. 

Using a minimum spanning tree, the weights of a minimum variance optimisa-
tion are illustrated in figure 2. The size of the nodes is proportional to the weights.

Weights of a minimum variance optimisation

 

Figure 2
The minimum variance approach tends to allocate high weights on assets with a low variance and a low 
overall correlation. Many constituents are obtaining a zero weight and are removed from the portfolio. 
Source: Munich Re 
 

The minimum spanning tree is created by a filtering algorithm which succes-
sively removes less important links to reveal a pronounced structure of the 
complex portfolio information. 

 Fixed income

 Equity

 Commodity
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Illustration of the minimum spanning tree algorithm

              

Figure 3
Classical allocation techniques often take into account the correlations between all asset pairs in the 
portfolio. This is illustrated in the upper part of the figure, where a very large and fully connected graph 
of correlation dependencies can be seen: each asset is linked to all the other assets. The minimum span-
ning tree identifies the most important links, and drops less relevant ones.
Source: Munich Re
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The hierarchical risk parity approach

The HRP approach introduced by de Prado (2016) defines a new robust port-
folio diversification technique. It is based on the fundamental idea that com-
plex systems such as financial markets show a hierarchical structure and that 
assets can be grouped into clusters with similar behaviour and risk profile. 

The design persuades to avoid the pitfalls of traditional allocation methods 
such as inverting the covariance matrix or not taking into account the correla-
tion structure at all. The clusters tend to be stable over time, leading to less 
fluctuation in the allocation and a robust out-of-sample outperformance com-
pared to other allocation methodologies. 

The robustness of the approach was shown in Jaeger et al. (2020) using a 
block-bootstrapping resampling method: 100,000 bootstrapped scenarios 
were generated from the empirical dataset and analysed in depth. HRP was 
found to show better risk-adjusted returns and lower maximum drawdowns 
compared to NRP and ERC.

The first step of the HRP approach is to use a hierarchical clustering algorithm 
to group assets with a similar risk profile together. Hierarchical clustering is 
mathematically similar to the minimum spanning tree. It reveals a nested clus-
ter structure that is often visualised using a so-called dendrogram. This is done 
by defining a distance metric based on the pairwise correlation of the assets. 
Applying a hierarchical cluster algorithm provides a hierarchical clustering tree 
grouping the assets into specific risk clusters uncovering the pronounced 
structure of complex market dependencies. 

De Prado (2016) uses the single-linkage clustering algorithm for building the 
clusters. Notably, the single-linkage clustering is an equivalent representation 
of the minimum spanning tree. Since this method suffers from chaining and 
tends to deliver sparse clusters, we modify the original HRP approach and 
instead apply Ward’s method (Ward, 1963) which generally forms more 
homogenous clusters. 

The dendrogram in figure 4 visualises the grouping of the assets in our  portfolio.  

Hierarchical clustering

 

Figure 4
Assets with a similar risk profile are grouped together. Even regional dependencies become evident, e.g. 
S&P500, NASDAQ-100 and Russel 2000 or FTSE 100, SMI, STOXX Europe 600 and DAX are forming 
clusters.
Source: Munich Re
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In a second step the cluster tree is used to quasi-diagonalise the covariance 
matrix. Figure 5 illustrates the quasi-diagonalisation for the correlation matrix. 
High correlations are marked in red and low correlations are marked in green. 

Quasi-diagonalisation of the correlation matrix

Figure 5
The correlation matrix is reordered using the order of the hierarchical clustering forming blocks of high 
correlation. 
Source: Munich Re

The final step of the algorithm then calculates the weight for each of the assets 
using a recursive bi-sectioning procedure of the reordered covariance matrix. 
We start at the top of the tree and with a weight of 1 for each asset. 

Then we divide the assets into two equal subsets (“bi-sectioning”) and rescale 
the weights by multiplying each weight with the inverse proportion of its sub-
sets variance. Both subsets are divided again, and the weights are rescaled 
respectively. Recursively the final weights are thereby derived. The details can 
be found in de Prado (2016). Figure 6 illustrates the recursive algorithm: 
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Recursive allocation

 

Figure 6
Weights are distributed optimally following an inverse-variance allocation. The recursive algorithm 
ensures that the weights are positive and sum up to 1 on each split level.
Source: Munich Re

One important result of this construction is that the HRP allocation avoids high 
risk concentration. This is due to the hierarchical clustering which groups 
highly correlated assets together and low correlated assets are arranged far 
away. Nevertheless, the method is taking into account dynamic changes in the 
correlation matrix. The construction method apparently ensures stability in the 
allocation. Minor changes in the covariance matrix only lead to minor changes 
in the final weight allocation. 

The HRP diversifies well across asset classes, regions, dynamically changing 
asset clusters and even across single positions/futures. It takes a harmonised 
approach across capital weights and risk contributions of assets and grouped 
assets. As will be seen later, HRP is not focused entirely on a single diversifica-
tion measure. Instead, it takes a balanced position in a wide range of many dif-
ferent diversification measures. It seems that the approach benefits from this 
behaviour since there does not exists one single best diversification measure.

What are the results of such a rich diversification approach? The wide range of 
diversification properties covered by HRP makes the strategy less prone to a 
range of shock scenarios. The likelihood of hidden portfolio concentrations, 
which could potentially lead to unexpectedly large losses, is reduced. Shocks 
in financial markets can originate from single assets but also from groups of 
asset which lead to collective or systemic shocks. HRP positions the portfolio 
in a way to mitigate those shocks. 
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The FIVE Robust Multi-Asset Index (VROBUST1)

We applied the hierarchical risk parity approach to create the FIVE Robust 
Multi-Asset Index (VROBUST). The long-only asset universe is comprised of 
20 well-diversified futures markets, covering equity index, government bond 
and commodity markets. The index is an excess return2 index; it is rebalanced 
monthly on the first business day of the month and scaled to target a realised 
index volatility of 5% per annum. The index includes a fee of 25bps and a real-
istic implementation of transaction costs. 

Investment portfolio

Table 1
Source: Munich Re

Figure 7 illustrates the index performance3 over time and shows a comparison 
to traditional allocation methods such as equal weight (EW), naive risk parity 
(NRP), equally-weighted risk contribution (ERC) and minimum variance (MV).  

Comparison of historical index performance

 

Figure 7
Source: Munich Re

1 ISIN: DE000SL0ASR0, Reuters ticker: .VROBUST, Bloomberg ticker: VROBUST <Index>
2 The USD-denominated excess return version has been chosen for this article, as it allows for better 

comparability and strategy quality analysis. Furthermore, as the portfolio components are FX-hedged, 
the choice of the index base currency has minor impact on the index excess return performance.

3 Past performance is no indication of future performance.
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Table 2 summarises selected key performance metrics for the different 
 allocation methods.

Performance Metric

EW NRP MV ERC HRP

Compound annual growth rate 2.5% 4.0% 4.1% 4.3% 5.0%

Volatility 4.9% 4.9% 5.1% 5.0% 5.0%

Sharpe ratio4 0.51 0.81 0.80 0.86 1.00 

Maximum drawdown –23.5% –17.9% –13.5% –15.6% –12.2%

Sortino ratio5 0.81 1.30 1.31 1.39 1.64 

Calmar ratio6 0.11 0.23 0.31 0.28 0.42 

Mean leverage 70% 106% 142% 120% 128%

Table 2
Selected key performance metrics (based on daily returns and annualised if applicable). 
Source: Munich Re

It is well known that the performance of an investment strategy is often 
 dominated by the extreme outcomes of a few trading days. HRP can perform 
comparably well in extreme market environments: during the crises following 
the Dotcom Bubble and the collapse of Lehman Brothers or during the recent 
 pandemic crisis of Covid-19.

4 The Sharpe ratio measures the excess performance compared to a risk-free asset of an investment 
adjusting for its risk. 

5 The Sortino ratio is a modification of the Sharpe ratio. It relates the excess performance to its 
 downside deviation.

6 The Calmar ratio is defined as the annualized average discrete rate of return divided by the maximum 
drawdown.
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Case Studies

We perform three case studies for a deeper understanding how the HRP 
 allocation performs in different crises. We decided to study the Great Bond 
Massacre in 1994, the Global Financial Crisis 2007–2009 and the ongoing 
Coronavirus Pandemic in 2020. These 3 crises are very different in their nature, 
source and effects and thus help us to understand the benefits of the HRP allo-
cation principle.

Great Bond Massacre 1994

The 1994 bond market crisis or Great Bond Massacre was a sharp sell-off in 
the bond markets starting in Japan and the US in January 1994 due to fast 
increased interest rates under FED Chair Alan Greenspan. The crisis spread 
through almost all developed markets. In 1994 the Federal Reserve increased 
interest rates from 3% to 5.5% by the end of the year. 

1 January 1994– 
31 January 1995

EW NRP MV ERC HRP

Commodities –1.1% –1.1% –2.6% –2.2% –1.6%

Equities –4.6% –3.1% 0.6% –2.8% –1.4%

Fixed Income –2.8% –5.2% –8.2% –5.4% –7.3%

Total –8.6% –9.4% –10.3% –10.5% –10.3%

Table 3
Asset-class specific performance attribution (discrete returns).
Source: Munich Re

Given the high bond allocation in the HRP portfolio it is not surprising that HRP 
is one of the worst performing portfolios in this scenario. But remarkably all 
portfolios perform comparably poor and ERC which is much acclaimed for its 
good diversification records the sharpest decline. 

The Global Financial Crisis 2007–2009

The financial crisis led to extreme drawdowns in equity and commodity mar-
kets but to falling yields and therefore increasing bond prices. We choose the 
period from the top to the bottom of the S&P 500 index for our analysis.   

9 October 2007– 
9 March 2009

EW NRP MV ERC HRP

Commodities 0.2% 0.2% 0.1% 0.2% 0.3%

Equities –14.5% –16.0% –12.4% –14.2% –6.8%

Fixed Income 1.4% 5.5% 8.0% 8.0% 13.1%

Total –12.9% –10.3% –4.3% –6.1% 6.5%

Table 4
Source: Munich Re

We observe that the HRP method manages to avoid the steep drawdowns in 
equity and commodity markets and made significant gains in the fixed income 
segment. All other methods including MV accumulate high losses predomi-
nant in equity markets and cannot compensate this with gains in fixed income. 
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Coronavirus Pandemic 2020

The ongoing coronavirus pandemic which started end of 2019 led to one of the 
fastest downturns in equity markets ever recorded. On top, one of the biggest 
oil price shocks ever lead to immense losses in shorter term WTI and Brent oil 
futures. Even gold showed a slump of more than 10% from the top. Govern-
ment bond markets experienced a roller coaster ride: for example, 10 year US 
rates first dropped from 1.87% on 1 January 2020 to a low of 0.32% on 9 March, 
just to recover to 1.2% within one week and afterwards stabilising around 
60 bps. Again HRP manages to avoid deeper drawdowns and shows the best 
performance of the considered methods. 

1 January 2020– 
30 April 2020

EW NRP MV ERC HRP

Commodities –1.9% –2.1% –1.3% –1.9% –0.2%

Equities –2.6% –2.2% –6.4% –2.3% –4.7%

Fixed Income 0.5% 1.2% 5.7% 1.6% 4.2%

Total –4.0% –3.0% –2.0% –2.6% –0.8%

Table 5
Source: Munich Re
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HRP systematically diversifies which leads to robustness. At the same time, it  
participates in broader market recoveries due to its harmonised approach on 
diversification. It basically and systematically harvests the diversification 
return, which leads to the following performance tableau covering all possible 
(calendar annual) investment horizons starting in 2001.

Return Triangle

           
      

Table 6
Source: Munich Re

The stability of the return triangle confirms robust performance over time. This 
also means the result of an investment is rather independent of market timing 
which historically is hard to find in investment practice. Drawdowns are less 
intense and rather short compared to peers. 

NRP and ERC tend to outperform HRP slightly in bull markets due to a higher 
concentration in equity exposure. However, in the long run, it pays off for HRP 
to mitigate its vulnerability to tail events that typically arise due to concen-
trated risks, thus decrease the negative effects of tail events and participate in 
up-trending markets by broader diversification.

To better understand the key aspects of the favourable diversification of HRP 
figure 8 visualises a representative allocation of a MV, HRP and NRP portfolio.

Investment

Divestment
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HRP is well balanced (1): notional weight perspective

  

Figure 8
HRP is in many cases able to cure shortcomings of classical 
allocation techniques, and provides truly balanced portfo-
lios: while considering all components, it tends to avoid risk 
concentration.
Source: Munich Re
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We observe that the HRP portfolio tends to find a  balance between more 
extreme portfolios. Compared to the minimum variance portfolio, it distributes 
the weights more even between all assets. There are no assets with zero 
weight and the weight concentrations are less distinct. 

To deeply understand where the risk of a portfolio is stemming from, it is 
important to consider the risk contribution of each asset to the overall portfolio 
risk (figure 9). 
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Figure 9
While minimum variance often leads to assign large 
amounts of risk weight to individual assets, naive risk parity 
is more evenly  distributing – thus disregarding potential 
clusters of assets. HRP sits in the well-balanced middle of 
those two extremes.
Source: Munich Re
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HRP is well balanced (2): risk weight perspective
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We notice that HRP shows a balanced distribution of risk over assets and asset 
classes. At first glance, the weights of the inverse volatility portfolio do look 
smoothly distributed as well but looking at the risk arising from the different 
asset classes it becomes visible that a large amount of risks is allocated to 
equities. On average, approximately 60% of the risk originates from equities. 
For the equally-weighted risk contribution (ERC) approach, the risk contribu-
tion per asset is the same by definition. The risk per asset class therefore is 
simply proportional to the number of assets within the asset class, i.e. 55% of 
the risk arises from equities. For HRP and minimum variance on average  30% 
of the risk stems from equities. 

Let’s have a look at the concentration of the portfolios and measure how good 
the diversification across the different portfolios and allocation methods is. In 
general, there are various metrics that are used to measure the diversification 
of a portfolio. 

Here, we focus on the commonly used metrics maximum risk contribution, 
diversification ratio, concentration ratio and the number of uncorrelated 
 exposures. 

Most of the allocation methods are specifically designed to optimise a single 
concentration measure and hence by definition might look very favourable for 
this metric. For example, EW minimises the maximum weight, ERC minimises 
the maximum risk contribution, the most-diversified portfolio (MDP, not con-
sidered in this article) optimises the diversification ratio and the concentration 
ratio is minimised by NRP. 

Concentration metrics  

Maximum risk contribution

The metric shows the highest amount of risk attributed to one individual asset during the 
time window under consideration.

Diversification ratio

The diversification ratio (DR) measures the volatility reduction in a portfolio originating 
from diversification effects (Choueifaty, 2008) 

               .

Concentration ratio

The diversification ratio can be decomposed into a volatility-weighted average correlation 
and a volatility-weighted concentration ratio (CR)

                                    .

 
The decomposition                                                      shows that for a given portfolio the diversifi-
cation ratio can be increased by an decreasing concentration ratio.

Uncorrelated exposures

The number of uncorrelated exposure was introduced by Meucci (2009). Deduced from a 
principal component analysis (PCA) the portfolio is decomposed into a number of uncorre-
lated sources of risk (Principal Portfolios). The metric can be defined as the exponential of 
the negative Shannon entropy 
 
                                               

Figure 10
Source: Munich Re
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DR = (ρ(1– CR) + CR)– 1
2

N = exp(–∑pi  log pi ).



Figure 11
HRP together with ERC show the most balanced concentra-
tion metrics. Especially the low concentration ratio in com-
bination with a high number of uncorrelated exposures do 
look very favorable for the HRP approach. 
Source: Munich Re
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Concentration metrics 7, 8

7 The metrics diversification ratio, concentration ratio and number of uncorrelated exposures were 
 calculated on each monthly rebalancing date and afterwards we formed the average of those values.

8 Please note that some constituents were not available at the start of the index and therefore the 
 presented diversification of the portfolios tends to be lower than what is observed in recent years.
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MV and HRP show high maximum risk contributions stemming from high 
 allocations in the fixed income segment but also due to the higher leverage. 
The diversification ratios are on a similar level. MV shows by far the highest 
concentration ratio but also the highest amount of uncorrelated exposures. 

For HRP, we notice that it looks well-balanced between a proper concentration 
and a high number of uncorrelated exposures. This holds also for the ERC 
method, which yields a very positive index performance but mainly suffered 
from worse drawdowns in the years following the Dotcom Bubble and the 
Global Financial Crisis. 

Quintessence

The efficient and optimal composition of investment portfolios is a key chal-
lenge for all kind of investors. For more than half a century, the interpretation of 
the term “optimal” has been dominated by MPT-style approaches to asset allo-
cation. While Markowitz (1952) without any doubt represents one of the most 
important milestones in finance, its theoretical elegance is often not mirrored 
in reality .

Originating from graph theory and machine learning, the HRP approach pro-
vides a new contemporary prescription to the traditional challenges of asset 
allocation. A key aspect is the introduction of hierarchical relationships 
amongst portfolio components. This has an important consequence: asset 
weight budget is no longer able to fluctuate freely and find unintended ways in 
a fully connected asset universe. As a consequence, HRP enforces more stable 
solutions, which are also more in line with intuition.

The HRP approach manages to benefit from stable diversification effects and 
a well-balanced allocation between different asset classes, both in theory and 
in practice. It incorporates the correlation structure of the portfolio in its 
straightforward and coherent construction principle and at the same time 
avoids the problems of the inversion of the covariance matrix.

Especially during extreme and challenging market phases, the HRP method 
can profit from its stable and diversified allocation and it is outstanding in min-
imising losses. This mitigation of steep drawdowns is key for the remarkable 
long-term outperformance of other major allocation principles.  

Given the remarkably stable results and low drawdowns, HRP appears to be 
an ideal candidate for long-term investing in the context of life insurance and 
pension schemes.
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Disclaimer

This document should be viewed
solely in conjunction with a reinsur-
ance solution description (the “trans-
action”) provided by Munich Re in 
order to indicate, on a preliminary
basis, the features of an Index pos-
sibly included in such transaction.  
This Index description shall not be 
used for any product or offering other 
than the transaction. This document 
alone has no regard to specific 
investment objectives, financial 
 situation or particular needs of any 
recipient. The information contained 
in this document should be treated 
as highly confidential.
No disclosure or reproduction may 
be made to third parties regarding 
any information disclosed in this 
document without the prior permis-
sion of Munich Re. Content and 
scope of this document are believed
to be factual and are solely for your
information and the basis for further
discussions with you. This document
does not purport to contain all 
 information that may be required to 
evalu ate the transaction. The infor-
mation in this document reflects 
 pre vailing conditions and our views 
as of this date, which are accordingly 
subject to change. 

Munich Re is under no obligation to 
update or keep current the informa-
tion contained herein. In preparing 
this document, we have relied upon 
and assumed, without independent 
verification, the accuracy and com-
pleteness of all information available 
from public sources. No representa-
tion or warranty, expressed or 
implied, is made as to the accuracy, 
reliability or completeness of the 
information contained in the docu-
ment, and nothing contained herein 
is, or shall be relied upon as, a 
 promise or representation nor is this 
 document intended to be a complete 
statement or summary of the prod-
ucts, markets or developments 
referred to in herein.
Neither Munich Re nor any of its 
 affiliates, directors, employees or 
agents accepts any liability for any 
loss or damage arising out of the use 
of all or any part of this material.  
This  document shall not be con-
strued as an offer to enter into the 
transaction. Any offer would be made 
at a later date and subject to con-
tract, satisfactory documentation 
and market conditions.
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